103 research outputs found

    Development and validation of the global surface type data product from S-NPP VIIRS

    Get PDF
    Accurate representation of actual terrestrial surface types at regional to global scales is an important element for many applications. Based on National Aeronautics and Space Administration Moderate Resolution Imaging Spectroradiometer land cover algorithms, a global surface-type product from observations of the Visible Infrared Imaging Radiometer Suite (VIIRS) on board the Suomi National Polar-orbiting Partnership, provides consistent global land cover classification map for various studies, such as land surface modelling for numerical weather predictions, land management, biodiversity and hydrological modelling, and carbon and ecosystem studies. This letter introduces the development and validation of the VIIRS global surface-type product using the land cover classification scheme of the International Geosphere- Biosphere Programme. Surface reflectance data from VIIRS were composited into monthly data and then into annual metrics. The C5.0 decision tree classifier was used to determine the surface type for each pixel in a 1 km grid. To quantitatively evaluate accuracies of the new surface type product, a visual interpretation-based validation was performed in which high-resolution satellite images and other ancillary data were used as the reference. The validation result based on the large validation data set indicated that (78.64 ± 0.57)% overall classification accuracy was achieved

    Development and validation of the global surface type data product from S-NPP VIIRS

    Get PDF
    Accurate representation of actual terrestrial surface types at regional to global scales is an important element for many applications. Based on National Aeronautics and Space Administration Moderate Resolution Imaging Spectroradiometer land cover algorithms, a global surface-type product from observations of the Visible Infrared Imaging Radiometer Suite (VIIRS) on board the Suomi National Polar-orbiting Partnership, provides consistent global land cover classification map for various studies, such as land surface modelling for numerical weather predictions, land management, biodiversity and hydrological modelling, and carbon and ecosystem studies. This letter introduces the development and validation of the VIIRS global surface-type product using the land cover classification scheme of the International Geosphere- Biosphere Programme. Surface reflectance data from VIIRS were composited into monthly data and then into annual metrics. The C5.0 decision tree classifier was used to determine the surface type for each pixel in a 1 km grid. To quantitatively evaluate accuracies of the new surface type product, a visual interpretation-based validation was performed in which high-resolution satellite images and other ancillary data were used as the reference. The validation result based on the large validation data set indicated that (78.64 ± 0.57)% overall classification accuracy was achieved

    TextNet: Irregular Text Reading from Images with an End-to-End Trainable Network

    Full text link
    Reading text from images remains challenging due to multi-orientation, perspective distortion and especially the curved nature of irregular text. Most of existing approaches attempt to solve the problem in two or multiple stages, which is considered to be the bottleneck to optimize the overall performance. To address this issue, we propose an end-to-end trainable network architecture, named TextNet, which is able to simultaneously localize and recognize irregular text from images. Specifically, we develop a scale-aware attention mechanism to learn multi-scale image features as a backbone network, sharing fully convolutional features and computation for localization and recognition. In text detection branch, we directly generate text proposals in quadrangles, covering oriented, perspective and curved text regions. To preserve text features for recognition, we introduce a perspective RoI transform layer, which can align quadrangle proposals into small feature maps. Furthermore, in order to extract effective features for recognition, we propose to encode the aligned RoI features by RNN into context information, combining spatial attention mechanism to generate text sequences. This overall pipeline is capable of handling both regular and irregular cases. Finally, text localization and recognition tasks can be jointly trained in an end-to-end fashion with designed multi-task loss. Experiments on standard benchmarks show that the proposed TextNet can achieve state-of-the-art performance, and outperform existing approaches on irregular datasets by a large margin.Comment: Asian conference on computer vision, 2018, oral presentatio

    Impacts of disturbance history on forest carbon stocks and fluxes: Merging satellite disturbance mapping with forest inventory data in a carbon cycle model framework

    Get PDF
    Forest carbon stocks and fluxes are highly dynamic following stand-clearing disturbances from severe fire and harvest and this presents a significant challenge for continental carbon budget assessments. In this work we use forest inventory data to parameterize a carbon cycle model to represent post-disturbance carbon trajectories of carbon pools and fluxes for specific forest types growing in high and low site productivity class settings. We then apply these trajectories to landscapes and regions based on forest age distributions derived from either the FIA data or from Landsat time series stacks (1985–2006) for 54 representative scenes throughout most of the conterminous United States.Weestimate the net carbon uptake in forests caused by post-disturbance growth and decomposition (“regrowth sink”) for forested regions across the country. At the landscape scale, the prevailing condition of positive net ecosystem productivity (NEP) is in stark contrast to local patcheswith large sources, particularly in the west where fires and clear cuts create contiguous disturbed patches. At the continental scale, regional differences in disturbance rates reflect management patterns of high disturbance rates in the Southeastern and South Central states, and lower disturbance rates in the Northeast andNorthern Lakes States. Despite low contemporary disturbance rates in the Northeast and Northern Lakes States (0.61 and 0.74% y−1), the regrowth sink there remains of moderate to large strength (88 and 57 g C m−2 y−1) owing to the continued legacy from historical clearing. Large regrowth sinks are also found in the Southeast, South Central, and Pacific Southwest regions (85, 86, and 95 g C m−2 y−1) where disturbance rates also tend to be higher (1.59, 1.38, and 0.93% y−1). Overall, the Landsat-derived disturbance rates are elevated relative to FIA-derived rates (1.19 versus 0.93% y−1) particularly for western regions. The differences only modestly adjust regional- and continental-scale carbon budgets, reducing NEP from forest regrowth by about 8%

    Generating Ground Reference Data for a Global Impervious Surface Survey

    Get PDF
    We are engaged in a project to produce a 30m impervious cover data set of the entire Earth for the years 2000 and 2010 based on the Landsat Global Land Survey (GLS) data set. The GLS data from Landsat provide an unprecedented opportunity to map global urbanization at this resolution for the first time, with unprecedented detail and accuracy. Moreover, the spatial resolution of Landsat is absolutely essential to accurately resolve urban targets such as buildings, roads and parking lots. Finally, with GLS data available for the 1975, 1990, 2000, and 2005 time periods, and soon for the 2010 period, the land cover/use changes due to urbanization can now be quantified at this spatial scale as well. Our approach works across spatial scales using very high spatial resolution commercial satellite data to both produce and evaluate continental scale products at the 30m spatial resolution of Landsat data. We are developing continental scale training data at 1m or so resolution and aggregating these to 30m for training a regression tree algorithm. Because the quality of the input training data are critical, we have developed an interactive software tool, called HSegLearn, to facilitate the photo-interpretation of high resolution imagery data, such as Quickbird or Ikonos data, into an impervious versus non-impervious map. Previous work has shown that photo-interpretation of high resolution data at 1 meter resolution will generate an accurate 30m resolution ground reference when coarsened to that resolution. Since this process can be very time consuming when using standard clustering classification algorithms, we are looking at image segmentation as a potential avenue to not only improve the training process but also provide a semi-automated approach for generating the ground reference data. HSegLearn takes as its input a hierarchical set of image segmentations produced by the HSeg image segmentation program [1, 2]. HSegLearn lets an analyst specify pixel locations as being either positive or negative examples, and displays a classification of the study area based on these examples. For our study, the positive examples are examples of impervious surfaces and negative examples are examples of non-impervious surfaces. HSegLearn searches the hierarchical segmentation from HSeg for the coarsest level of segmentation at which selected positive example locations do not conflict with negative example locations and labels the image accordingly. The negative example regions are always defined at the finest level of segmentation detail. The resulting classification map can be then further edited at a region object level using the previously developed HSegViewer tool [3]. After providing an overview of the HSeg image segmentation program, we provide a detailed description of the HSegLearn software tool. We then give examples of using HSegLearn to generate ground reference data and conclude with comments on the effectiveness of the HSegLearn tool

    Quality Assessment of Landsat Surface Reflectance Products Using MODIS Data

    Get PDF
    Surface reflectance adjusted for atmospheric effects is a primary input for land cover change detection and for developing many higher level surface geophysical parameters. With the development of automated atmospheric correction algorithms, it is now feasible to produce large quantities of surface reflectance products using Landsat images. Validation of these products requires in situ measurements, which either do not exist or are difficult to obtain for most Landsat images. The surface reflectance products derived using data acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS), however, have been validated more comprehensively. Because the MODIS on the Terra platform and the Landsat 7 are only half an hour apart following the same orbit, and each of the 6 Landsat spectral bands overlaps with a MODIS band, good agreements between MODIS and Landsat surface reflectance values can be considered indicators of the reliability of the Landsat products, while disagreements may suggest potential quality problems that need to be further investigated. Here we develop a system called Landsat-MODIS Consistency Checking System (LMCCS). This system automatically matches Landsat data with MODIS observations acquired on the same date over the same locations and uses them to calculate a set of agreement metrics. To maximize its portability, Java and open-source libraries were used in developing this system, and object-oriented programming (OOP) principles were followed to make it more flexible for future expansion. As a highly automated system designed to run as a stand-alone package or as a component of other Landsat data processing systems, this system can be used to assess the quality of essentially every Landsat surface reflectance image where spatially and temporally matching MODIS data are available. The effectiveness of this system was demonstrated using it to assess preliminary surface reflectance products derived using the Global Land Survey (GLS) Landsat images for the 2000 epoch. As surface reflectance likely will be a standard product for future Landsat missions, the approach developed in this study can be adapted as an operational quality assessment system for those missions

    Mapping 2000–2010 Impervious Surface Change in India Using Global Land Survey Landsat Data

    Get PDF
    Partial funding for Open Access provided by the UMD Libraries' Open Access Publishing Fund.Understanding and monitoring the environmental impacts of global urbanization requires better urban datasets. Continuous field impervious surface change (ISC) mapping using Landsat data is an effective way to quantify spatiotemporal dynamics of urbanization. It is well acknowledged that Landsat-based estimation of impervious surface is subject to seasonal and phenological variations. The overall goal of this paper is to map 2000–2010 ISC for India using Global Land Survey datasets and training data only available for 2010. To this end, a method was developed that could transfer the regression tree model developed for mapping 2010 impervious surface to 2000 using an iterative training and prediction (ITP) approachAn independent validation dataset was also developed using Google Earth™ imagery. Based on the reference ISC from the validation dataset, the RMSE of predicted ISC was estimated to be 18.4%. At 95% confidence, the total estimated ISC for India between 2000 and 2010 is 2274.62 +/- 7.84 km2

    An Automated Algorithm to Screen Massive Training Samples for a Global Impervious Surface Classification

    Get PDF
    An algorithm is developed to automatically screen the outliers from massive training samples for Global Land Survey - Imperviousness Mapping Project (GLS-IMP). GLS-IMP is to produce a global 30 m spatial resolution impervious cover data set for years 2000 and 2010 based on the Landsat Global Land Survey (GLS) data set. This unprecedented high resolution impervious cover data set is not only significant to the urbanization studies but also desired by the global carbon, hydrology, and energy balance researches. A supervised classification method, regression tree, is applied in this project. A set of accurate training samples is the key to the supervised classifications. Here we developed the global scale training samples from 1 m or so resolution fine resolution satellite data (Quickbird and Worldview2), and then aggregate the fine resolution impervious cover map to 30 m resolution. In order to improve the classification accuracy, the training samples should be screened before used to train the regression tree. It is impossible to manually screen 30 m resolution training samples collected globally. For example, in Europe only, there are 174 training sites. The size of the sites ranges from 4.5 km by 4.5 km to 8.1 km by 3.6 km. The amount training samples are over six millions. Therefore, we develop this automated statistic based algorithm to screen the training samples in two levels: site and scene level. At the site level, all the training samples are divided to 10 groups according to the percentage of the impervious surface within a sample pixel. The samples following in each 10% forms one group. For each group, both univariate and multivariate outliers are detected and removed. Then the screen process escalates to the scene level. A similar screen process but with a looser threshold is applied on the scene level considering the possible variance due to the site difference. We do not perform the screen process across the scenes because the scenes might vary due to the phenology, solar-view geometry, and atmospheric condition etc. factors but not actual landcover difference. Finally, we will compare the classification results from screened and unscreened training samples to assess the improvement achieved by cleaning up the training samples. Keywords
    corecore